56 research outputs found

    Cytokine-dependent and–independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling

    Get PDF
    Background: The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results: We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value < 0.01) 24 hours post-invasion. A prominent type I interferon response was observed in each cell type, reflecting a secondary response to secreted cytokine in infected cultures. To identify a core cytokine-independent response in T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction

    2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador

    Get PDF
    Background: Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. Methodology/Principal findings: The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. Conclusions/Significance: Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment. Author summary: Understanding Chagas disease vector (triatomine) population dispersal is key for the design of control measures tailored for the epidemiological situation of a particular region. In Ecuador, Rhodnius ecuadoriensis is a cause of concern for Chagas disease transmission, since it is widely distributed from the central coast to southern Ecuador. Here, a genome-wide sequencing (2b-RAD) approach was performed in 20 specimens from four communities from Manabí (central coast) and Loja (southern) provinces of Ecuador, and the effectiveness of three type IIB restriction enzymes was assessed. The findings of this study show that this genotyping methodology is cost effective in R. ecuadoriensis and likely in other triatomine species. In addition, preliminary population genomic analysis results detected a signal of population structure among geographically distinct communities and genetic variability within communities. As such, 2b-RAD shows significant promise as a relatively low-tech solution for determination of vector population genomics, dynamics, and spread

    COVID-19 Vaccine Hesitancy in Three Latin American Countries:Reasons Given for Not Becoming Vaccinated in Colombia, Ecuador, and Venezuela

    Get PDF
    Although vaccines have been developed to prevent COVID-19, vaccine hesitancy is a significant barrier for vaccination programs. Most research on COVID-19 vaccine hesitancy has blamed misinformation and misstated concerns about effectiveness, safety, and side effects of these vaccines. The preponderance of these studies has been performed in the Global North. Although Latin American has been substantially and negatively impacted by COVID-19, few studies have examined COVID-19 vaccine hesitancy there. We explored reasons volunteered for COVID-19 vaccine hesitancy from a sample of 1,173 Colombians, Ecuadorians, and Venezuelans. Overall, COVID-19 vaccine hesitancy in these three countries is higher than desirable, but most people who are COVID-19 vaccine hesitant offered one reason or fewer. The reasons offered are diverse, including myths and exaggerations, but also individual-level contraindications for vaccination and structural barriers. Because of the diversity of reasons, single-issue mass campaigns are unlikely to bring about large shifts in COVID-19 vaccine hesitancy in Colombia, Ecuador, and Venezuela. Our data suggest that interpersonal communication, particularly in Ecuador, and addressing structural concerns, particularly in Venezuela, are likely to have the greatest impact on vaccine uptake

    Parasite-mediated remodeling of the host microfilament cytoskeleton enables rapid egress of Trypanosoma cruzi following membrane rupture

    Get PDF
    Chagas’ disease arises as a direct consequence of the lytic cycle of Trypanosoma cruzi in the mammalian host. While invasion is well studied for this patho-gen, study of egress has been largely neglected. Here, we provide the first description of T. cruzi egress documenting a coordinated mechanism by which T. cruzi engineers its escape from host cells in which it has proliferated and which is essential for mainte-nance of infection and pathogenesis. Our results indicate that this parasite egress is a sudden event involving coordinated remodeling of host cell cytoskeleton and subsequent rupture of host cell plasma membrane. We document that host cells maintain plasma membrane integrity until immediately prior to parasite release and report the sequential transformation of the host cell’s actin cytoskeleton from normal meshwork in noninfected cells to spheroidal cages—a process initiated shortly after amastigogenesis. Quantification revealed gradual reduction in F-actin over the course of infection, and using cytoskeletal preparations and electron microscopy, we were able to observe disruption of the F-actin proximal to intracellular trypomastigotes. Finally, Western blotting experiments suggest actin degradation driven by parasite proteases, suggesting that degradation of cytoskeleton is a principal component controlling the initiation of egress. Our results provide the first description of the cellular mechanism that regulates the lytic component of the T. cruzi lytic cycle. We show graphically how it is possible to pre-serve the envelope of host cell plasma membrane during intracellular proliferation of the parasite and how, in cells packed with amastigotes, differentiation into trypomasti-gotes may trigger sudden egress

    Seroprevalence of Trypanosoma cruzi in Rural Ecuador and Clustering of Seropositivity within Households

    Get PDF
    We performed a cross-sectional study of Trypanosoma cruzi seroprevalence in 14 communities in three provinces of Ecuador and estimated the magnitude of the association of seropositive individuals within households. A total of 3,286 subjects from 997 households were included. Seroprevalence was 5.7%, 1.0%, and 3.6% in subjects in the Manabí, Guayas, and Loja provinces, respectively. Seroprevalence increased with increasing age in Manabí and Guayas, whereas in Loja, the highest prevalence occurred in children ≤ 10 years of age. In the coastal provinces, clustering of seropositives within households was not observed after adjustment for other household factors. However, in the Andean province of Loja, the odds of seropositivity were more than two times greater for an individual living in a household with another seropositive person. Our results indicate that transmission of T. cruzi is ongoing in Ecuador, although intensity of transmission and mechanisms of interaction between humans and the insect vectors of disease vary between geographic regions

    Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Get PDF
    BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages

    Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity.

    Get PDF
    Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research

    Population genomics and geographic dispersal in Chagas disease vectors: landscape drivers and evidence of possible adaptation to the domestic setting

    Get PDF
    Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches

    Sex, Subdivision, and Domestic Dispersal of Trypanosoma cruzi Lineage I in Southern Ecuador

    Get PDF
    Trypanosoma cruzi is transmitted by blood sucking insects known as triatomines. This protozoan parasite commonly infects wild and domestic mammals in South and Central America. However, triatomines also transmit the parasite to people, and human infection with T. cruzi is known as Chagas disease, a major public health concern in Latin America. Understanding the complex dynamics of parasite spread between wild and domestic environments is essential to design effective control measures to prevent the spread of Chagas disease. Here we describe T. cruzi genetic diversity and population dynamics in southern Ecuador. Our findings indicate that the parasite circulates in two largely independent cycles: one corresponding to the sylvatic environment and one related to the domestic/peridomestic environment. Furthermore, our data indicate that human activity might promote parasite dispersal among communties. This information is the key for the design of control programmes in Southern Ecuador. Finally, we have encountered evidence of a sexual reproductive mode in the domestic T. cruzi population, which constitutes a new and intriguing finding with regards to the biology of this parasite

    Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi.

    Get PDF
    Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure
    • …
    corecore